Образовательный портал - Kuveys

1. Каждую секунду Земля получает 170 миллиардов ватт от солнечных вспышек


Солнце вырабатывает огромное количество энергии. Благодаря ей на Земле происходят жизненно важные процессы, наподобие водного цикла. Более 170 миллиардов ватт солнечной энергии каждую секунду «врезается» в земную атмосферу.
Чтобы сравнить эти невероятные масштабы, представьте, что в среднем смартфон потребляет около двух тысяч ватт в течение года. Солнце посылает в миллиард раз больше энергии в атмосферу каждую секунду!
Не вся солнечная энергия, которая достигает атмосферы, попадает на поверхность Земли. Атмосфера поглощает и отражает часть энергии обратно в космос, облака также отражают и поглощают энергию.
На самом деле только 50 % солнечной энергии проходит через атмосферу и попадает на поверхность Земли. И это очень хорошо, поскольку, если бы поверхности Земли достигало 100 процентов солнечной энергии, то наша жизнь кардинально бы отличалась от нынешней.

2. Когда мы едим фрукты и овощи, мы получаем калории от Солнца


Растения также могут нам поведать довольно интересные факты о солнечной энергии. Например, мы используем их, даже не подозревая, что растения еще один источник солнечной энергии. Оказывается, солнечная энергия играет очень важную роль в процессе фотосинтеза, генерирующий необходимый нам кислород.
Химическая реакция фотосинтеза преобразует воздух, воду и другие питательные вещества, так что растения, цветы и листья деревьев могут расти. Когда мы едим фрукты и овощи, мы потребляем калории, которые были созданы при помощи энергии Солнца. Так что, когда мы едим овощи, мы на самом деле получаем энергию от Солнца. Это один из удивительных фактов о солнечной энергии, который говорит нам, что мы используем солнечную энергию, даже когда мы не осознаем этого.
Люди едят мясо животных, которые в свою очередь едят корм, изготовленный из растений. Та энергия, которую мы получаем, употребляя в пищу мясо, происходит от энергии, которая «накапливается» в животных из растений. Это еще один удивительный факт о солнечной энергии – даже когда мы едим мясо, мы получаем энергию от Солнца.

3. Витамин D создается в нашем организме за счет солнечной энергии


Люди, как растения, также использую солнечную энергию в качестве витаминов.
Но в отличие от растений, мы не зависим от этой энергии настолько сильно. Тем не менее, наше тело нуждается в солнечной энергии, чтобы выполнять различные химические процессы. Например, чтобы вырабатывать в организме витамин D.
В коже человека находится определенный тип холестерина, который преобразует предварительный тип витамина в витамин D, который защищает кожу от ультрафиолетового излучения. Предварительно, «витаминовая заготовка», при ультрафиолетовом излучении Солнца, попадает в печень, которая в конечном итоге вырабатывает столь необходимый организму витамин D.

4. Первая солнечная электростанция была построена в 1912 году


Солнечная энергия участвует в круговороте воды в природе. Солнце нагревает воду на Земле, и это вызывает испарение, которое преобразуется в осадки в виде дождя или снега.
Когда вода и другие жидкости нагреваются от солнечной энергии, они претерпевают изменения и превращаются в газ. Для воды, этот газ является паром. Уже в 1897 году, Фрэнк Шуман создал систему, которая использует энергию Солнца, чтобы привести в движение маленький двигатель. Его более поздние системы улучшались и использовали воду для питания полноразмерного парового двигателя.
В 1912 году Шуман запатентовал свою систему и построил первую солнечную электростанцию энергии в Египте. Это один из наиболее важных фактов в истории использования солнечной энергии. Электростанция Шумана была способна получать 45-52 киловатт, и стало первым масштабным коммерческим использованием солнечной энергии. По сегодняшним меркам это небольшой масштаб, но он дал начало широкому применению солнечной энергии. Этот факт вдохновил будущих изобретателей двигаться дальше.


Солнечная тепловая энергия является одним из видов технологий, которая способная нагревать воду, а затем использовать ее изменения, чтобы привести в действие машину. Шуман оказался провидцем, который показал всем, что солнечную энергию можно будет использовать, когда на Земле исчерпаются запасы угля и нефти.

5. Прохладный напиток в жаркий день является пассивной солнечной технологией


Есть два основных типа технологий, используемых для «захвата» и применения энергии Солнца: активные и пассивные.
Активные солнечные технологии, такие как солнечные панели, собирают солнечную энергию и преобразовывают ее в электрическую. Активная солнечная технология поставляет энергию для ее использования.
Пассивные солнечные технологии направлены на снижение использования энергии из других источников. Она может быть чем-то простым. Например, крыша дома со специальным отражающим покрытием, необходимым для уменьшения количества поступающей энергии. Это необходимо для охлаждения дома летом. Пассивные солнечные технологии работают за счет уменьшения количества энергии. Даже прохладительный напиток в жаркий день является одним из видов пассивной солнечной технологии.

6. Панели солнечных батарей используют фотоны, чтобы создавать экситоны и электронные поля


Когда люди думают о солнечной энергии, они часто представляют себе солнечные панели. Эти панели содержат «солнечные клетки», которые также известны как фотоэлементы, благодаря которым происходит фотоэлектрический эффект.
Фотоэлектрических эффект тенденция некоторых материалов возбуждаться фотонами в солнечной энергии. Различные материалы обладают различными свойствами при возбуждении энергией Солнца.
Также, используются специальные материалы, чтобы заставить солнечные батареи генерировать экситоны возбужденном состоянии. Наличие последних вызывает поток электронов. В дальнейшем, при помощи солнечной батареи этот поток преобразуется в электричество, которое мы потребляем.
Первые солнечные батареи не могли преобразовывать солнечную энергию в электричество. Они были эффективными лишь на 1-2 %, в то время как современные батареи в лабораториях эффективнее на 40 %.

7. Солнечная энергия может очищать воду с помощью УФ-излучения


Еще один удивительный факт о солнечной энергии заключается в том, что ее можно использовать для очистки воды. Данное свойство солнечной энергии было известно еще древним грекам, а также практиковалось персидскими алхимиками в 1500-х годах.
Процесс очистки соленой воды при помощи солнечной энергии называется солнечным опреснением. Существует еще один способ, который использует солнечную энергию для очистки воды под названием солнечная дистилляция. Солнечная дистилляция очищает воду от многих типов загрязнений. В качестве примера можно привести стандартный цикл круговорота воды в природе.
В качестве миниатюрного примера, можно взять картонную коробку и поставить над ямкой, предварительно вырытой во влажной почве. Та вода, которая при испарении окажется на поверхности коробки, будет чистой и пригодной к питью.
Еще один вариант очистки воды — ультрафиолетовое излучение. Оно является губительным для многих микробов и бактерий.

8. Солнечная энергия является единственным источником возобновляемой энергетики


Солнечная энергия является живительной для всего, что нас окружает. Если люди перейдут на источники питания от солнечных батарей, то значительно сократится использование электрической сети. Дело в том, что электросети получают питание благодаря сжиганию угля. А этот процесс способствует изменению климата, который приводит к глобальному потеплению.
Солнечная энергия является одним из лучших источников возобновляемой энергии. Некоторые утверждают, что она является единственным источником в своем роде. Большая часть инфраструктуры в развитом мире построена на ископаемых видах топлива. Поэтому переход на использование солнечной энергии в качестве основного источника энергии потребует значительных усилий.
Экономические преимущества использования солнечной энергии очевидны. Цены на топливо увеличиваются, а затраты на производство более эффективных солнечных батарей уменьшают.

9. Гравитационная энергия от Солнца удерживает Солнечную систему


Возможно, самый загадочный из фактов о солнечной энергии относится к гравитации, которую излучает Солнце. Благодаря гравитации все планеты и другие объекты сохраняют свои орбиты в Солнечной системе.
Гравитационная энергия является одной из наименее изученных сил во Вселенной. В то время как Солнце излучает свет и солнечную энергию на Землю, оно также притягивает Землю к себе своим гравитационным полем.
Если подумать, то выходит, что солнечная энергия несет ответственность не только за круговороты воды, питающие жизнь на Земле. Солнечная энергия создала условия для существования жизни на Земле, когда Солнечная система была только сформирована.


Солнечная энергия становится все более и более важной в жизни человечества. Ученые видят в ней возобновляемые источники энергии, которые не вредят окружающей среде, а также большую пользу для здоровья человека.


Есть одна причина, по которой Земля является единственным местом в Солнечной системе, где существует и процветает жизнь. Конечно, ученые подозревают, что под ледяной поверхностью Европы или Энцелада микробная или даже водная форма жизни, также ее могут найти и . Но до поры до времени Земля остается единственным местом, которое обладает всеми необходимыми условиями для существования жизни.

Одна из причин этому заключается в том, что Земля расположена в потенциально обитаемой зоне вокруг Солнца (так называемой «зоне Златовласки»). Это означает, что она находится в нужном месте (не слишком далеко и не слишком близко), чтобы получать обильную энергию Солнца, в которую входит свет и тепло, необходимые для протекания химических реакций. Но как именно Солнце обеспечивает нас энергией? Какие этапы проходит энергия на пути к нам, на планету Земля?

Ответ начинается с того, что Солнце, как и все звезды, может вырабатывать энергию, поскольку является, по сути, массивным термоядерным реактором. Ученые считают, что оно началось с огромного облака газа и частиц (т. е. туманности), которое коллапсировало под силой собственной тяжести - это так называемая теория туманности. В этом процессе родился не только большой шар света в центре нашей Солнечной системы, но и водород, собранный в этом центре, начал синтезироваться с образованием солнечной энергии.

Технически известный как ядерный синтез, этот процесс высвобождает огромное количество энергии в виде тепла и света. Но на пути из центра Солнца к планете Земля эта энергия проходит через ряд важных этапов. В конце концов, все сводится к слоям Солнца, и роль каждого из них играет важную роль в процессе обеспечения нашей планеты важнейшей для жизни энергией.

Ядро Солнца - это область, которая простирается от центра до 20-25% радиуса светила. Именно здесь, в ядре, производится энергия, порождаемая преобразованием атомов водорода (H) в молекулы гелия (He). Это возможно благодаря огромному давлению и высокой температуре, присущим ядру, которые, по оценкам, эквивалентны 250 миллиардам атмосфер (25,33 триллиона кПа) и 15,7 миллионам градусов по Цельсию, соответственно.

Конечным результатом является слияние четырех протонов (молекул водорода) в одну альфа-частицу - два протона и два нейтрона, связанных между собой в частицу, идентичной ядру гелия. В этом процессе высвобождается два позитрона, а также два нейтрино (что меняет два протона на нейтроны) и энергия.

Ядро - единственная часть Солнца, которая производит значительное количество тепла в процессе синтеза. По сути, 99% энергии, произведенной Солнцем, содержится в пределах 24% радиуса Солнца. К 30% радиуса синтез почти целиком прекращается. Остаток Солнца подогревается энергией, которая передается из ядра через последовательные слои, в конечном счете достигая солнечной фотосферы и утекая в космос в виде солнечного света или кинетической энергии частиц.

Солнце высвобождает энергию, преобразуя массу в энергию со скоростью 4,26 миллиона метрических тонн в секунду, что эквивалентно 38,460 септиллионам ватт в секунду. Чтобы вам было понятнее, это эквивалентно взрывам 1 820 000 000 «царь-бомб» - самой мощной термоядерной бомбы в истории человечества.

Зона лучистого переноса

Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.


этого слоя пониже, примерно от 7 миллионов градусов ближе к ядру до 2 миллионов градусов на границе конвективной зоны. Плотность тоже падает в сто раз с 20 г/см³ ближе к ядру до 0,2 г/см³ у верхней границы.

Конвективная зона

Это внешний слой Солнца, на долю которого приходится все, что выходит за рамки 70% внутреннего радиуса Солнца (и уходит примерно на 200 000 километров ниже поверхности). Здесь температура ниже, чем в радиационной зоне, и тяжелые атомы не полностью ионизированы. В результате радиационный перенос тепла проходит менее эффективно, и плотность плазмы достаточно низка, чтобы позволить появляться конвективным потокам.

Из-за этого поднимающиеся тепловые ячейки переносят большую часть тепла наружу к фотосфере Солнца. После тог, как эти ячейки поднимаются чуть ниже фотосферической поверхности, их материал охлаждается, а плотность увеличивается. Это приводит к тому, что они опускаются к основанию конвективной зоны снова - где забирают еще тепло и продолжают конвективный цикл.

На поверхности Солнца температура падает до примерно 5700 градусов по Цельсию. Турбулентная конвекция этого слоя Солнца также вызывает эффект, который вырабатывает магнитные северный и южный полюса по всей поверхности Солнца.

Именно в этом слое также появляются солнечные пятна, которые кажутся темными по сравнению с окружающей область. Эти пятна соответствуют концентрациям потоков магнитного поля, которые осуществляют конвекцию и приводят к падению температуры на поверхности по сравнению с окружающим материалом.

Фотосфера

Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.


Толщина фотосферы - сотни километров, именно в этой области Солнце становится непрозрачным для видимого света. Причина этого в уменьшении количества отрицательно заряженных ионов водорода (H-), которые с легкостью поглощают видимый свет. И наоборот, видимый свет, который мы видим, рождается в процессе реакции электронов с атомами водорода с образованием ионов H-.

Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.

Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать. Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны).

Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.

Солнечная энергия - это свет, тепло и жизнь на нашей планете, а еще солнечная энергия - главный альтернативный источник, который на несколько порядков превышает весь существующий энергетический потенциал Земли, и он в состоянии полностью обеспечить все ее энергетические потребности.

Как Солнце является нескончаемым источником тепла и света (условно), так и энергия солнечного излучения поддерживает жизнь на Земле уже не один миллион лет. Возможность обеспечивать все жизненно важные процессы Солнце имеет благодаря своему составу. В процентном соотношении оно преимущественно состоит из двух элементов: водорода (73%) и гелия (25%). Более подробно об образовании и жизненном цикле Солнца можно прочитать, например, в википедии.

Реакции термоядерного синтеза, которые происходят на Солнце сжигают водород, превращая его в гелий. Колоссальная энергия солнечных лучей, выделяющаяся во время таких процессов, излучается в космос. Кстати, ученые, пытаются повторить эти реакции на земле (реакция управляемого термоядерного синтеза, международный проект ТОКАМАК) .

Все организмы, использующие энергию солнечного света, обеспечивают с ее помощью свои процессы жизнедеятельности - солнечный свет необходим для начальной стадии процесса фотосинтеза. С ее участием происходит синтез таких веществ, как кислород и углеводороды.

Количество водорода на Солнце постепенно уменьшается и рано или поздно придет время, когда его запас на солнце будет исчерпан. Однако, в силу большого количества водорода этого не произойдет, по крайней мере, в ближайшие 5 миллиардов лет.

Каждую секунду в ядре Солнца около 4 миллионов тонн вещества преобразуются в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтрино.

Основной приток энергии Солнца, который доходит до атмосферы Земли находится в спектральном диапазоне 0,1 4 мкм. В диапазоне 0,3 1,5-2 мкм атмосфера Земли почти прозрачна для солнечного излучения. Ультрафиолетовые волны (длина волны короче 0,3 мкм) поглощаются слоем озона, который находится на высотах 20-60 км. Рентгеновское и гамма-излучение до поверхности Земли почти не доходят.

Концентрация солнечной энергии характеризируется величиной 1367 Вт/м 2 , именуемой солнечной постоянной. Именно такой поток проходит через перпендикулярную площадку размером в 1 м 2 , если ее поместить на входе в верхний слой атмосферы Земли. При достижении этим потоком уровня моря, потери энергии уменьшают его до 1000 Вт/м 2 на экваторе. Но смена дня и ночи снижает его еще в 3 раза. Для умеренных широт, с учетом зимнего периода он составляет половину от количественного показателя максимального потока на экваторе.

Усреднённый по времени и по поверхности Земли, этот поток составляет 341 Вт/м 2 . В расчете на полную поверхность, или 1,74х10 17 Вт в расчёте на полную поверхность Земли. Таким образом, в сутки Земля на поверхности получит 4,176х10 15 кВтч энергии, большая часть которой, возвращается в космос в виде излучения.

По данным МЭА на 2015 год, мировое производство энергии составило 19099 Mtoe (эквивалент мегатонны нефти). В пересчёте на привычные киловаттчасы, эта цифра составит 6,07х10 11 кВтч в сутки.

Солнце дает земле энергии в 8 000 раз больше, чем необходимо всему человечеству. Очевидно, что перспективы применения данного вида энергии очень широки. С ее участием развивается ветро-энергетика (ветер возникает из-за разности температур), применяются фотоэлектрические преобразователи и строятся гидроаккумулирующие станции. Имеет место широкое использование солнечных батарей.

Потенциал применения солнечной энергии очень велик.

Преимущества и недостатки использования солнечной энергии

Преимущества использования солнечной энергии привели к тому, что уже сегодня мы видим ее использование в самых разных видах человеческой деятельности.

Главными преимуществами являются:

  • Неисчерпаемость энергии солнца в ближайшие 4 миллиарда лет;
  • Доступность данного вида энергии - именно с ним безопасно и эффективно сегодня работают и фермеры, и хозяева частных домов, и заводы-гиганты;
  • Бесплатность и экологическая чистота вырабатываемой энергии;
  • Перспектива развития данного источника энергии, который становится все более актуальным в силу роста цен на другие виды энергии;
  • Т.к. количество ежегодно вводимого в эксплуатацию оборудования и его надежность растет, уменьшается стоимость вырабатываемого киловатт часа солнечной энергии.

К условным недостаткам солнечной энергии можно отнести:

  • Основным недостатком солнечной энергии является прямая зависимость количества получаемого света и тепла от влияния таких факторов, как погода, время года или же суток. Логическим последствием в таком случае является необходимость аккумулировать энергию, что увеличивает стоимость системы;
  • Для производства элементов оборудования данного предназначения применяются редкие а, следовательно, дорогостоящие элементы.

Перспективы развития солнечной энергетики

Сегодня технологии, в которых используется энергия солнечного света, находят все более широкое применение. Самые распространенные - это солнечные батареи. Фотоэлектрические элементы успешно устанавливаются на различные виды транспорта - начиная от электромобилей и заканчивая самолетами. Японцы практикуют установку их на поезда.

Успешно функционируя, одна из европейских гелиоэлектростанций обеспечивает все потребности Ватикана. Крупнейшая станция в Калифорнии, источником для которой является солнечная энергия (фото дают представления о масштабах), уже сейчас обеспечивает штат своей круглосуточной работой.

Внедрение таких технологий сталкивается с сопротивлением со стороны лидеров углеводородной отрасли - ведь альтернативные источники в энергетике могут в скором времени вытеснить их представителей с лидирующих позиций.

Если говорить о прямом преобразовании, то наибольшее распространение получили такие устройства преобразования солнечной энергии как тепловые трубы (солнечные коллекторы) и батареи солнечных фотоэлементов .

Экономика солнечной установки

При рассмотрении возможности установки солнечной электростанции основное внимание уделяют экологическим, а экономическим аспектам. Звучат они следующим образом:

  1. Какова стоимость солнечной установки?
  2. Каков срок ее окупаемости?
  3. Достаточное ли количество электроэнергии будет генерировать установка?

Целесообразно рассматривать небольшие электростанции мощностью до 50 кВт. Установки большей мощности применяют преимущественно на промышленных объектах.

Достаточное ли количество электроэнергии будет генерировать домашняя солнечная электростанция?

Для ответа на третий вопрос, перед началом проектирования солнечной установки определяет профиль энергопотребления дома. Его можно записать установив на объекте счетчик электроэнергии с функцией сохранения текущих параметров: напряжения сети, потребляемого тока, текущей потребляемой мощности, частоты. Через месяц, вы можете оценить свой профиль потребления со средними, максимальными и минимальными значениями параметров.

Если такой прибор отсутствует, то профиль энергопотребления можно оценить так: потребуется записать все приборы, которые могут использоваться в доме и смоделировать возможные варианты их ежедневного использования. После этого, вооружившись калькулятором, вы сможете рассчитать суточное потребление электричества и пиковые значения мощности.

Существенную роль играет регион, где расположено здание. Энергия, достигающая поверхности Земли, в зависимости от региона, может изменяться от более, чем 5 кВтч/м 2 /день до 1,5 кВтч/м 2 /день и менее.

Если максимальное потребление приходится на светлое время суток, то для обеспечения достаточности генерируемого электричества нужно разделить максимальную потребляемую мощность на мощность одной панели солнечных элементов. Тип и характеристики панелей известны из каталогов производителей. Нужно учитывать, что характеристики солнечных панелей приведены при их максимальной освещенности - поправка на региональный коэффициент обязательна. Зимний период, когда батареи покрыты снегом не учитывается.

Такой расчет не учитывает следующую особенность: В течении дня, установка будет всегда генерировать избыточное количество энергии , а ночью, по понятным причинам, генерация будет равна 0.

Аккумуляторные батареи с одной стороны увеличивают общую стоимость системы, с другой стороны, позволяют уменьшить количество панелей солнечных элементов за счет накопления энергии в периоды меньшего энергопотребления.

Для расчета банка АКБ нужно ответить на следующие вопросы:

  • Предполагается ли система полностью автономной?
  • В случае, если система не автономна, то какой максимальный возможный срок перерывов в электроснабжении.

Максимальное потребление в кВт часах умножается на количество часов без основного источника (нужно учитывать, что в момент отключения солнца может и не быть). На основе этих данных можно рассчитать емкость банка АКБ. Разрядка АКБ до 0 сокращает срок их службы, поэтому в расчете вводят коэффициент показателя максимального разряда, например, он может быть 50, 40 или 30 %. Чем меньше максимальный показатель разряда, тем большее количество АКБ потребуется.

Стоимость установки солнечной генерации

Основные составляющие оборудования системы распределяются по стоимости в следующем процентном соотношении (условно):

  • Инвертор и система управления - 15-40%;
  • Солнечные панели и MPPT контроллеры - 20-40%;
  • Банк АКБ - 30%.

Стоимость солнечных панелей и АКБ будет идентична для систем всех производителей, существенные отличия имеются только в стоимости оборудования инвертора с системой управления и MPPT контроллера.

Разница в цене достигает более 200%, в зависимости от производителя. Это обусловлено не только «брендом», но и возможностями системы, например, удобство в управлении, возможность удаленного доступа, максимальная нагрузка и устойчивость к 2х-3х кратным перегрузкам, возможность частичного отключения нагрузки и т.д.

Каждое конечное техническое решение будет немного отличаться от других из-за того, что все люди используют разную бытовую технику в разное время суток. Идеальной комбинации оборудования, даже на заданную мощность не существует.

В качестве ориентировочной стоимости функциональной солнечной установки в загородный дом с учетом резервирования части мощности можно грубо ориентироваться на цифры 700-1800 USD/кВт в зависимости от производителя оборудования.

Сроки окупаемости установки солнечной генерации

Если хозяева условно выезжают на дачу только на выходные, и при этом в доме отсутствуют потребители, которые работают ежедневно, то, скорее всего, система будет окупаться не менее 10-15 лет, при текущих тарифах на электроэнергию.

При постоянном проживании, сроки окупаемости сократятся до 6-10 лет.

Положительная сторона медали - собственник такого дома получает стабильный источник электроснабжения и не зависит от обрывов ЛЭП или перепада мощностей. Все сидят без света, а вы - со светом, охранные системы функционируют, не нужно вручную открывать гараж и т.п.

Можно предположить, что развитие частного электротранспорта позволит сократить срок окупаемости солнечной установки для домохозяйств. Владелец такого автомобиля будет бесплатно «заправлять» его от собственной крыши .

Срок окупаемости зависит от полноты использования электроэнергии. Если сооружение использует 100% от генерации и при этом подключено к центральной сети электроснабжения, то в общем случае, отсутствует необходимость установки банка АКБ. Расчетный срок полной окупаемости такой установки составит 3-5 лет, а в жарких регионах еще меньше.

Дополнительная выгода образуется из-за того, что днем владелец НЕ ПЛАТИТ по дневному тарифу, а ночью ПЛАТИТ по ночному.

Такими быстро окупаемыми объектами могут быть любые энергозатратные производства с пустой плоской крышей, торгово-развлекательные и спортивные центры и паркинги при них, холодильные комплексы и т.п.

Удивительно, но подобные решения, позволяющие существенно снизить эксплуатационные затраты, до сих пор никак не используется владельцами объектов недвижимости.

В обозримом будущем, с развитием солнечной энергетики, все большее число владельцев зданий станут использовать чистую энергию взамен углеводородного сырья.

В последние годы ученых особенно интересуют альтернативные источники энергии. Нефть и газ рано или поздно закончатся, поэтому подумать о том, как мы будем выживать в этой ситуации, приходится уже сейчас. В Европе активно используются ветряки, кто-то пытается извлечь энергию из океана, а мы поговорим о солнечной энергии. Ведь звезда, которую мы практически каждый день видим в небе, может помочь нам сберечь и улучшить экологическую обстановку. Значение солнца для Земли трудно переоценить - оно дает тепло, свет и позволяет функционировать всему живому на планете. Так почему бы не найти ему еще одно применение?

Немного истории

В середине 19 века физик Александр Эдмон Беккерель открыл фотогальванический эффект. А к концу столетия Чарльз Фриттс создал первый прибор, способный перерабатывать солнечную энергию в электричество. Для этого использовался селен, покрытый тонким слоем золота. Эффект был слабым, но именно это изобретение зачастую связывают с началом эры солнечной энергии. Некоторые ученые не согласны с такой формулировкой. Они называют родоначальником эры солнечной энергии всемирно известного ученого Альберта Эйнштейна. В 1921 году он получил Нобелевскую премию за объяснение законов внешнего фотоэффекта.

Казалось бы, солнечная энергия - это перспективный путь развития. Но существует немало препятствий для того, чтобы она вошла в каждый дом - в основном, экономических и экологических. Из чего складывается стоимость солнечных батарей, какой вред они могут нанести окружающей среде и какие еще существуют способы получения энергии, узнаем ниже.

Способы накопления

Самой актуальной задачей, связанной с приручением энергии солнца, является не только ее получение, но и аккумуляция. И именно это является самым сложным. В настоящее время учеными было разработано только 3 способа полноценного приручения солнечной энергии.

Первый основан на использовании параболического зеркала и немного напоминает игру с лупой, которая всем знакома с детства. Сквозь линзу свет проходит, собираясь в одной точке. Если в этом месте положить кусочек бумаги, она загорится, поскольку температура скрещенных солнечных лучей невероятно высока. Параболическое зеркало представляет собой вогнутый диск, напоминающий неглубокую чашу. Это зеркало, в отличие от лупы, не пропускает, а отражает солнечный свет, собирая его в одной точке, которая обычно направлена на черную трубу с водой. Такой цвет используют потому, что он лучше всего поглощает свет. Вода в трубе под действие солнечных лучей нагревается и может использоваться для получения электричества или для отопления небольших домов.

Плоский нагреватель

В этом способе используется совсем другая система. Приемник солнечной энергии выглядит как многослойная конструкция. Принцип его работы выглядит так.

Проходя через стекло, лучи попадают на затемненный металл, который, как известно, лучше поглощает свет. Солнечная радиация превращается в и нагревает воду, которая находится под железной пластиной. Далее все происходит как в первом способе. Нагретую воду можно использовали либо для отопления помещений, либо для получения электрической энергии. Правда, эффективность такого метода не настолько высока, чтобы использовать его повсеместно.

Как правило, полученная таким образом солнечная энергия - это тепло. Для получения электричества гораздо чаще используют третий способ.

Солнечные элементы

Больше всего мы знакомы именно с таким способом получения энергии. Он подразумевает использование различных батарей или солнечных панелей, которые можно встретить на крышах многих современных домов. Такой способ сложнее ранее описанных, но является намного более перспективным. Именно он дает возможность солнца в электричество в промышленных масштабах.

Специальные панели, предназначенные для улавливания лучей, делают из обогащенных кристаллов кремния. Солнечный свет, попадая на них, сбивает электрон с орбиты. На его место тут же стремится другой, таким образом получается непрерывная подвижная цепочка, которая и создает ток. Он при необходимости сразу используется для обеспечения приборов или накапливается в виде электроэнергии в специальных аккумуляторах.

Популярность этого способа обоснована тем, что он позволяет получить более 120 Вт всего с одного квадратного метра солнечной батареи. При этом панели имеют сравнительно небольшую толщину, что позволяет размещать их практически везде.

Типы кремниевых панелей

Существует несколько видов солнечных батарей. Первые выполнены с использованием монокристаллического кремния. Их коэффициент полезного действия составляет примерно 15%. Такие являются наиболее дорогими.

КПД элементов, изготовленных из поликристаллического кремния, достигает 11%. Стоят они меньше, поскольку материал для них получают по упрощенной технологии. Третий тип является наиболее экономичным и отличается минимальным КПД. Это панели из аморфного кремния, то есть некристаллического. Кроме низкой эффективности, они имеют еще один существенный недостаток - недолговечность.

Некоторые производители для увеличения КПД задействуют обе стороны панели солнечной батареи - тыльную и фронтальную. Это позволяет улавливать свет в больших объемах и увеличивает количество получаемой энергии на 15-20%.

Отечественные производители

Солнечная энергия на Земле получает все большее распространение. Даже в нашей стране заинтересованы в изучении этой отрасли. Несмотря на то что в России не очень активно идет развитие альтернативной энергетики, определенных успехов удалось добиться. В настоящее время созданием панелей для получения солнечной энергии занимаются несколько организаций - в основном это научные институты различной направленности и заводы по производству электрооборудования.

  1. НПФ "Кварк".
  2. ОАО «Ковровский механический завод».
  3. Всероссийский НИИ электрификации сельского хозяйства.
  4. НПО машиностроения.
  5. АО ВИЭН.
  6. ОАО «Рязанский завод металлокерамических приборов».
  7. АООТ Правдинский опытный завод источников тока «Позит».

Это только небольшая часть предприятий, принимающих активное участие в развитии альтернативной

Влияние на окружающую среду

Отказ от угольных и нефтяных источников энергии связан не только с тем, что эти ресурсы рано или поздно закончатся. Дело в том, что они сильно вредят окружающей среде - загрязняют почву, воздух и воду, способствуют развитию заболеваний у людей и снижению иммунитета. Именно поэтому альтернативные источники энергии должны быть безопасны с экологической точки зрения.

Кремний, который используется для производства фотоэлементов, сам по себе безопасен, поскольку является природным материалом. Но после его очистки остаются отходы. Именно они могут нанести вред человеку и окружающей среде при неправильном использовании.

Кроме того, на участке, полностью заставленном солнечными батареями, может нарушиться естественное освещение. Это приведет к изменениям в существующей экосистеме. Но в целом влияние на окружающую среду устройств, предназначенных для преобразования солнечной энергии, минимально.

Экономичность

Самые большие затраты по связаны с дороговизной сырья. Как мы уже выяснили, специальные панели создаются с использованием кремния. Несмотря на то что этот минерал широко распространен в природе, с его добычей связаны большие проблемы. Дело в том, что кремний, который составляет более четверти массы земной коры, не подходит для производства солнечных батарей. Для этих целей пригоден только чистейший материал, получаемый промышленным способом. К сожалению, из песка получить чистейший кремний крайне проблематично.

По цене данный ресурс сравним с ураном, использующимся на АЭС. Именно поэтому стоимость солнечных батарей в настоящее время остается на довольно высоком уровне.

Современные технологии

Первые попытки приручить солнечную энергию появились достаточно давно. С тех пор многие ученые активно заняты поисками максимально эффективного оборудования. Оно должно быть не только экономически выгодным, но также компактным. Его КПД должен стремиться к максимуму.

Первые шаги к идеальному прибору для получения и преобразования солнечной энергии были сделаны с изобретением кремниевых батарей. Конечно, цена достаточно высока, но зато панели могут быть размещены на крышах и стенах домов, где они никому не будут мешать. А эффективность таких батарей неоспорима.

Но лучший способ увеличить популярность солнечной энергии - сделать ее более дешевой. Немецкие ученые уже предложили заменить кремний синтетическими волокнами, которые могут быть интегрированы в ткань или другие материалы. КПД такой солнечной батареи не очень высок. Но рубашка с вкраплением синтетических волокон сможет, по крайней мере, обеспечить электроэнергией смартфон или плеер. Активно ведутся работы и в области нанотехнологий. Вероятно, именно они позволят солнцу стать наиболее популярным источником энергии уже в этом столетии. Специалисты компании Scates AS из Норвегии уже заявили, что нанотехнологии позволят сократить стоимость солнечных панелей в 2 раза.

Солнечная энергия для дома

О жилье, которое само себя будет обеспечивать, наверняка мечтают многие: нет зависимости от централизованного отопления, сложностей с оплатой счетов и вреда для окружающей среды. Уже сейчас во многих странах активно строится жилье, потребляющее только энергию, полученную из альтернативных источников. Яркий пример - так называемый солнечный дом.

В процессе строительства он потребует больших вложений, чем традиционный. Но зато после нескольких лет эксплуатации все затраты окупятся - не придется платить за отопление, горячую воду и электричество. В солнечном доме все эти коммуникации привязаны к специальным фотоэлектрическим панелям, размещенным на крыше. Причем полученные таким образом энергетические ресурсы не только расходуются на текущие нужды, но и накапливаются для использования в ночное время и при пасмурной погоде.

В настоящее время строительство таких домов ведется не только в странах, приближенных к экватору, где добывать солнечную энергию проще всего. Их возводят также и в Канаде, Финляндии и Швеции.

Плюсы и минусы

Развитие технологий, позволяющих повсеместно использовать солнечную энергию, могло бы вестись более активно. Но существую определенные причины, по которым это все еще не является приоритетной задачей. Как мы уже говорили выше, при производстве панелей вырабатываются вредные для окружающей среды вещества. Кроме того, готовое оборудование содержит в своем составе галлий, мышьяк, кадмий и свинец.

Немало вопросов вызывает и необходимость утилизации фотоэлектрических панелей. Через 50 лет работы они станут непригодными для службы, и их придется каким-то образом уничтожать. Не нанесет ли это колоссальный вред природе? Стоит также учитывать, что солнечная энергия - это непостоянный ресурс, эффективность получения которого зависит от времени суток и погоды. А это является существенным недостатком.

Но и плюсы, конечно, есть. Солнечную энергию можно добывать практически в любой точке Земли, а оборудование для ее получения и преобразования может быть настолько маленьким, что поместится на тыльной стороне смартфона. Что еще немаловажно, это возобновляемый ресурс, то есть количество солнечной энергии будет оставаться неизменным еще как минимум тысячи лет.

Перспективы

Развитие технологий в области солнечной энергетики должно привести к снижению затрат на создание элементов. Уже сейчас появляются стеклянные панели, которые могут быть установлены на окнах. Развитие нанотехнологий позволило изобрести краску, которая будет напыляться на солнечные батареи и сможет заменить кремниевый слой. Если стоимость солнечной энергии действительно снизится в несколько раз, ее популярность также вырастет многократно.

Создание маленьких панелей для индивидуального применения позволит людям в любых условиях использовать солнечную энергию - дома, в машине или даже за городом. Благодаря их распространению снизится нагрузка на централизованные электросети, поскольку люди смогут самостоятельно зарядить мелкую электронику.

Специалисты компании Shell полагают, что к 2040 году около половины энергии в мире будет создаваться за счет возобновляемых ресурсов. Уже сейчас в Германии потребление солнечной энергии активно растет, а мощность батарей составляет более 35 Гигаватт. Япония также активно развивает эту отрасль. Две эти страны - лидеры потребления солнечной энергии в мире. Вероятно, скоро к ним присоединятся и Соединенные Штаты.

Другие альтернативные источники энергии

Ученые не перестают ломать голову над тем, что еще можно использовать для получения электричества или тепла. Приведем примеры наиболее перспективных альтернативных источников энергии.

Ветряки сейчас можно встретить практически в любой стране. Даже на улицах многих российских городов устанавливают фонари, которые сами обеспечивают себя электричеством за счет энергии ветра. Наверняка их себестоимость выше средней, но зато со временем они эту разницу возместят.

Достаточно давно была придумана технология, позволяющая получать энергию, используя разницу температур воды на поверхности океана и на глубине. Китай активно собирается развивать это направление. В ближайшие годы у берегов Поднебесной собираются построить крупнейшую электростанцию, работающую по этой технологии. Существуют и другие способы использования моря. Например, в Австралии планируют создать электростанцию, генерирующую энергию из силы течений.

Есть и многие другие или тепла. Но на фоне многих других вариантов солнечная энергия - это действительно перспективное направление развития науки.

Солнечная энергия дает жизнь всему живому на Земле. Под ее воздействием испаряется вода с морей и океанов, превращаясь в водные капли, образуя туманы и облака. В результате, эта влага вновь выпадает на Землю, создавая постоянный круговорот. Поэтому, мы постоянно наблюдает снег, дождь, иней или росу. Создаваемая солнцем огромная система отопления, позволяет наиболее оптимально распределять тепло по поверхности Земли. Чтобы правильно понимать и использовать эти процессы, необходимо представлять себе источник энергии солнца и то, от чего зависит его влияние на нашу планету.

Виды солнечной энергии

Основным видом энергии, выделяемой Солнцем, по праву считается лучистая энергия, оказывающая прямое влияние на все важнейшие процессы, происходящие на Земле. Если сравнивать с ней другие земные энергетические источники, то их запасы бесконечно малы и не позволяют решить всех проблем.

Из всех звезд, Солнце расположено к Земле ближе всего. По своей структуре оно является газовым шаром, многократно превышающим диаметр и объем нашей планеты. Поскольку размеры газового шара достаточно условны, то его границами считается видимый с Земли солнечный диск.

Источник и физические свойства солнечной энергии

Все процессы, происходящие на Солнце, можно наблюдать лишь на его поверхности. Однако, основные реакции протекают в его внутренней части. По сути, это гигантская атомная станция с давлением примерно 100 млрд. атмосфер. Здесь, в условиях сложных ядерных реакций, происходит превращение водорода в гелий. Именно эти реакции образуют основной источник энергии солнца. Внутренняя температура составляет, в среднем, приблизительно 16 млн. градусов.

Газ, бушующий внутри Солнца, имеет не только сверхвысокую температуру, но и является чрезвычайно тяжелым, обладающим плотностью, многократно превышающей среднюю солнечную плотность. Одновременно, происходит возникновение рентгеновских лучей, которые, по мере приближения к Земле, увеличивают длину своих волн и уменьшают частоту колебаний. Таким образом, они постепенно становятся видимым и ультрафиолетовым светом.

При отдалении от центра, характер лучистой энергии изменяется, оказывая влияние и на температуру. Происходит ее постепенное снижение сначала до 150 тыс. градусов. С Земли хорошо видна только внешняя солнечная оболочка, так называемая фотосфера. Ее толщина составляет примерно 300 км, а температура верхнего слоя снижается до 5700 градусов.

Над фотосферой расположена солнечная атмосфера, состоящая из двух частей. Нижний слой носит название хромосферы, а верхний слой, не имеющий границ, представляет собой солнечную корону. Здесь газы разогреваются до нескольких миллионов градусов под действием ударных волн чудовищной силы.

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ: